MEMS-SWITCH-Cubes
> 1x1, 1x2, 2x2, 1x4, for special fibers (SF Series)

Overview

The SF-series are opto-mechanical switches for the most demanding applications in fiber optic sensor systems and instrumentation. The switch is available in 1x1, 1x2, 2x2 and 1x4 variants and offers solid state reliability, accurate precision and fast response time. The switch mechanism is available in either latching or non latching variants and has a very fast response time below 1 ms and below 1.5 dB insertion loss. The single mode switch is available for a number of specialty fibers covering design wavelengths such as 488 nm, 515 nm, 633 nm, 680 nm, 780 nm, 830 nm, 980 nm and 1064 nm.

The switch is qualified according to Telcordia GR 1221.

Features

- reliable
- specialty fibers
- 1.5 dB insertion loss
- 1 ms response time
- low PDL
- 60 dB crosstalk
- miniature size
- 2x2, 2x1, 1x1 variants

Applications

- Instrumentation
- Source selection

Description

The Mems-Switches are composed of an optical subsystem and an electrical driver interface. The optical switching function is realized by a silicon MEMS chip, on which a mirror can be moved in and out of the optical path by electrostatic actuation. In the latching SF-L variants a bistable suspension mechanism keeps the last selected state in power off. In the non-latching SF-N variants the switch returns into the bar state when electrical power is removed.

To operate the switch 5V and 0V are applied on the supply pins, which are used by the internal DC-DC converter to supply a high voltage for the actuator control. CMOS or TTL logic levels on the control pins switch the high voltage on the electrostatic actuator.

To set the switch state in the latching variant, pin 2 respectively pin 3 are set to logic high (5V) for 10 ms and the corresponding switch state is selected. At rest pins 3 and 4 should be pulled to 0 V and must not be floating.
MEMS-SWITCH-Cubes
> 1x1, 1x2, 2x2, 1x4, for special fibers (SF Series)

In the non-latching variant only pin 2 is used to set the state of the switch. To set the cross state pin 3 must be at logic high. When pin 3 goes to logic low, or at power off, the switch returns into the bar state. Technology by Sercalo™.

BAR STATE (0 V) CROSS STATE (5 V)

<table>
<thead>
<tr>
<th>Technical Specifications</th>
<th>Unit</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wavelength Range</td>
<td>nm</td>
<td>Cut off</td>
<td>~ Cut off +200 nm</td>
<td></td>
</tr>
<tr>
<td>Insertion Loss</td>
<td>dB</td>
<td>0,7</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>Crosstalk</td>
<td>dB</td>
<td>75</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Backreflection</td>
<td>dB</td>
<td>55</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Polarisation Dependent Loss</td>
<td>dB</td>
<td>0,02</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>Repeatability</td>
<td>dB</td>
<td></td>
<td>0,001</td>
<td></td>
</tr>
<tr>
<td>Switching Time</td>
<td>ms</td>
<td>0,5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Durability</td>
<td>cycles</td>
<td></td>
<td>3 billion</td>
<td></td>
</tr>
</tbody>
</table>

Package

Voltage	V	4	5	5,25
Power Consumption	mW	0	5	10
Operation Temperature	°C	0		70
Storage Temperature	°C	-40		85
Size (L x W x H)	mm	40 x 16,5 x 9,5		

1 excluding connector loss.
2 value for constant temperature and polarization

PIN Connections

1 5 V supply, (2 mA)
2 selector 0 V: Bar
5 V: Cross
3 ground 0 V
MEMS-SWITCH-Cubes
> 1x1, 1x2, 2x2, 1x4, for special fibers (SF Series)

Figure 2: Pin layout MO1x2: latching with position monitor. Without monitor, pins 5,6 are omitted.

Figure 3: Pin layout SF1x4: latching. In the non-latching variant pins S4, S5, S6 are omitted.
MEMS-SWITCH-Cubes

> 1x1, 1x2, 2x2, 1x4, for special fibers (SF Series)

Ordering Information

Switch type
L = latching
N = non-latching

State monitor
- = no monitor
TS= position monitor (latching variant only)

Number of ports
2X2
1X4
1X2 (no port 4)
1X1 (no ports 4,2)

Cut Off (design) Wavelength
3 = <450 nm (for 488 and 514 nm)
4 = <600 nm (for 633 and 680 nm)
5 = <750 nm (for 780 nm)
6 = <800 nm (for 830 nm)
7 = <970 nm (for 980, 1064 and 1550 nm)
9 = <1250 nm (for 1310 and 1550 nm)

Fiber sleeve type
N = loose tube 900 µm
B = bare fiber 250 µm

Connector in/out
none = 0
SC/PC = 1
FC/PC = 2
SC/APC * = 3
FC/APC * = 4
LC/PC = 5
MU/PC = 6
E2000 = 7
E20000/HRL * = 8
ST/PC = 9

* 8° angular polishing

Corporate Office:
Cube Optics AG
Robert-Koch-Strasse 30
55129 Mainz
Germany

Fon: +49-6131-69851-0
Fax: +49-6131-69851-79
e.mail: sales@cubeoptics.com

www.cubeoptics.com